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We explore the time-translational relation between one of the
owder angles (g) and the sample rotation angle (vrt) in NMR
pectroscopy of rotating solids. Averaging over the g powder angle
s shown to be generally equivalent to a cross correlation of two
eriodic functions. This leads to a fundamental relation concern-

ng the phases of NMR spectra of rotating solids as well as
mproved strategies for efficient simulation of experimental spec-
ra. Using these results in combination with the frequency-domain
imulation procedure COMPUTE (M. Edén et al., J. Magn. Reson.

120, 56 (1996)), it proves possible to reduce the computation
ime for spectral simulations by typically a factor 10–30 relative to
he state-of-the-art calculations using the original COMPUTE
lgorithm. The advantage and the general applicability of the new
imulation procedure, referred to as g-COMPUTE, are demon-
trated by simulation of single- and multiple-pulse MAS NMR
pectra of 31P–31P and 1H–1H spin pairs influenced by anisotropic
hemical shielding and homonuclear dipolar interactions. © 1999

cademic Press

INTRODUCTION

Extraction of detailed information about molecular struc
nd dynamics from solid-state NMR powder spectra o
elies on numerical simulations. To obtain molecular para
ers with the highest possible accuracy, the spectral simula
re typically combined with iterative fitting procedures.
pectra of rotating polycrystalline powders this data ana
an be extremely time consuming, not only because the H
ltonian describing the spin system is time dependent, but
ecause a spectrum averaged over three powder angles

o be calculated for each iteration. The ability to cond
eliable computer simulations and iterative fitting within
easonable period of time therefore highly depends on
evelopment of efficient simulation methods.
The typical procedure for simulating NMR spectra of ro

ng solids can be divided into two major steps: (i) integra
f the equation of motion to obtain propagators for the t
volution and (ii) calculation of the free-induction decay (F
ased on these propagators. For a polycrystalline powder
teps are repeated for each crystallite orientation and the r
oadded to obtain the final FID. The two steps are typic
6090-7807/99 $30.00
opyright © 1999 by Academic Press
ll rights of reproduction in any form reserved.
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ssociated with widely different requirements for the com
ation time as demonstrated in Table 1. In the most com
pproach, step (i) concerns a time-ordered product of p
ators, corresponding to infinitesimal rotations induced
pproximately time-independent Hamiltonians. For peri
amiltonians this step only involves one period and is o

elatively inexpensive with respect to computation time. In
implest form (henceforth referred to as the direct meth
tep (ii) may involve formation of thousands of FID points
uccessive multiplication of propagators from step (i), pro
ation of the density operator, and evaluation of the sign

he scalar product between the density operator and the h
ian adjoint of the observable. For typical spectral simulat
his step may account for up to 99% of the computation t
his observation is of fundamental importance for the de
f efficient simulation procedures.
Previous methods to reduce the computational effort a

iated with g averaging have included the method of “ti
ranslation,” in which step (i) may be performed with sign
antly increased efficiency using the fact that one of the p
er angles (g) and the sample revolution (vrt) both correspon

o a rotation about the rotor axis (1). This implies that th
ropagators formed under step (i) for oneg powder angle ma
e reused to form the propagators for all otherg angles. In a
ore advanced approach based on Floquet theory Levaet
l. (2) and Kuboet al. (3) recently demonstrated that theg
veraging may be described analytically, and the latter g
howed that in case of ideal pulse excitation this averaging
e conducted implicity in the Fourier transformation of

ree-induction decay. For spectral simulations, which may
olve a huge number of matrix multiplications under step
uch frequency-domain techniques are often very efficie
lso demonstrated recently by Ede´n et al. (4) by the introduc

ion of the COMPUTE (computationover one modulation
eriodusing time evolution) algorithm. Exploiting the period

city of the Hamiltonian and performing the calculations in
requency domain, the COMPUTE algorithm leads to a
tantial reduction (typically a factor of about 5 in our imp
entation relative to the direct method) in the computa

ime required for calculation of spectra associated with p
dic Hamiltonians.



tio
b the
H the
f igh
a th
t i-
f nin
( rac
t ter
a
b
n ers
T ntly
e n o
t -
f
o by
f a
c ina
C .”

ilto
n

w f
t cie
r
r e
(

w
g
v
a e
r

T

e
r e
f for
t

w
E to
a tion,
r
2

w
( 1
c
u
a lgo-
r

ical
s f
p it
i med
f he
s a-
t t in
t ering
t the
f

t
C
S
(

D
C
g

s
ut

r
ct o

p

7EFFICIENT SPECTRAL SIMULATIONS IN NMR OF ROTATING SOLIDS
In this paper we demonstrate that the symmetry rela
etween the angleg and the periodic time dependence of
amiltonian for rotating solids can be used directly in

requency domain, thereby providing new analytical ins
nd significantly faster simulation procedures. It is shown

he fundamental explanation of Levitt (5), concerning the un
orm phase of spinning sidebands in magic-angle-spin
MAS) powder spectra arising from inhomogeneous inte
ions (vide infra), may be generalized to homogeneous in
ctions in the sense of Maricq and Waugh (6). This result may
e exploited to virtually remove the cost ofg averaging in
umerical simulations of NMR spectra for rotating powd
he time-translational symmetry property is most efficie
xploited in the frequency domain by an improved versio

he COMPUTE algorithm, dubbedg-COMPUTE, which per
orms theg-averaging by across correlation(7) of two peri-
dic functions. In typical cases this leads to a reduction

actor of 10–30 in computation time for the simulations
ompared to the state-of-the-art combination of the orig
OMPUTE algorithm with “g averaging by time translation

THEORY

Consider the high-field truncated time-dependent Ham
ian governing a NMR interactionl

Hl~t! 5 Cl O
j

~Rj ,0
l !LTj ,0

l , [1]

hereCl is constant andTj ,0
l and (Rj ,0

l )L are components o
he j -rank tensors describing spin and spatial dependen
espectively. The spatial tensor in the laboratory frame (L) is
elated to a rotor-fixed frame (R) and a crystallite-fixed fram
C) through

TABLE 1
Computational Effort Distributed over Initialization, Integra-

ion of the Equation of Motion, and Spectrum Generation for
alculation of Typical Magic-Angle Spinning Solid-State NMR
pectra Using a Direct Method, COMPUTE, and g-COMPUTE
See Text)a

Method\stage Initializationb Integrationc Spectrum generationd

irect 0.3 0.1 99.6
OMPUTE 21.8 2.4 78.2
-COMPUTE 45.8 4.3 50.0

a As a percentage of the total CPU time. The calculations used the31P–31P
pin-pair parameters given in the legend to Fig. 2.

b Typically involves parameter input, tensor transformations, and outp
esults.

c Step (i): Solution of the equation of motion by a time-ordered produ
ropagators.

d Step (ii): Calculation of the spectrum or FID from the propagators.
n

t
at

g
-
-

.

f

a
s
l

-

s,

~Rj ,0
l !L 5 O

k,l52j

j

~Rj ,k
l !Cexp$2ikaCR%dk,l

~ j !~bCR!

3 exp$2il ~gCR 1 vrt!%dl ,0
~ j !~bRL!, [2]

hered( j ) is a reduced Wigner matrix of rankj , { aCR, bCR,

CR} the set of Euler angles connectingC to R, and {aRL 5

r t, bRL, 0} the set of Euler angles relatingR to L. vr is the
ngular spinning frequency andbRL the angle between th
otor axis and the static field direction.

ime-Translational Symmetry

From Eq. [2] it is evident thatgCR may equivalently b
egarded a translation in time bygCR/vr. This leads to th
ollowing relations for the Hamiltonians and propagators
he two anglesgCR 5 g0 and gCR 5 0

H~t; g0! 5 HS t 1
g0

vr
; 0D , [3]

U~t2, t1; g0! 5 US t2 1
g0

vr
, t1 1

g0

vr
; 0D ,

[4]

here the propagatorU is evaluated from timet1 to t2.
quations [3] and [4] can be recast in a discrete form
dditionally include the case of general periodic RF irradia
otor synchronized withn periods in one rotor periodtr 5
p/vr. For gCR 5 p(2p/n) the relations are

HS t; p
2p

n D 5 H~t 1 pt; 0!, [5]

US jt, ~ j 2 1!t; p
2p

n D 5 Sj
p 5 S~ p1j21 modn!11

0 , [6]

ith t 5 tr /n andSj
p being the propagator for thej th period

j 5 1, 2, . . . , n) of the general timing scheme in Fig.
orresponding to thegCR anglep(2p/n). It is noted that we
se a notation similar to that used by Ede´n et al.(4) to facilitate
direct comparison between COMPUTE and the new a

ithm g-COMPUTE.
It is evident that Eq. [6] may be used directly in numer

imulations to generate all propagatorsSj
p from the set o

ropagatorsSj
0 corresponding togCR 5 0. Hence, the explic

ntegration of the equation of motion need only be perfor
or p 5 0 and a factor close ton can be saved in step (i) of t
imulation. This corresponds to “g-averaging by time transl
ion” (1). However, physical insight and much higher benefi
erms of saved computation time may be gained by consid
he consequences of the time-translational symmetry in
requency domain.

of

f
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8 HOHWY ET AL.
-COMPUTE:g-Angle Averaging as a Cross Correlation

Consider the timing of a rotor periodtr 5 nt, as sketche
n Fig. 1, accommodatingn blocks of identical, arbitrary puls
equence elements (obviously including the important
f no RF irradiation) of durationt. For the crystallite angl

CR 5 p(2p/n), the accumulated propagatorsAj
p are recur

ively defined as

Aj
p 5 HSj

pAj21
p , for j . 0

1, for j50
. [7]

sing the time-translational property in Eq. [6],Aj
p may be

elated to the propagatorAj
0 corresponding togCR 5 0 by

Aj
p 5 Aj1p mod n

0 ~ An
0!m~ Ap modn

0 !† [8]

ith

m 5 intS j 1 p

n D 2 intSp

nD [9]

here int(a/b) denotes the integer part of the fractiona/b.
For a N-level spin system, the propagatorAn

p accumulate
ver the rotor periodtr is represented by a unitaryN 3 N
atrix. Forp 5 0, this matrix may be unitarily diagonaliz
ccording to

An
0 5 X exp$2iDtr%X

†, [10]

here D is a real, diagonal matrix.An
0 has N complex

igenvalueslr (r 5 1, 2, . . . , N). Using the comple
ogarithm function, the real transition frequencies can
alculated as

v# rs 5 Drr 2 Dss 5
ln lr 2 ln ls

2itr
. [11]

ikewise, forgCR 5 p(2p/n) with 0 , p , n the propagato

n
p 5 Ap

0An
0( Ap

0)† over a full modulation periodtr may be
iagonalized according to

An
p 5 Xpexp$2iDtr%Xp

†, Xp 5 Ap
0X. [12]

learly, for all of then differentgCR angles the propagato
ver a full modulation period have the same eigenvalues

herefore identical transition frequencies (line positio
his fundamental property suggests that a simple rela
xists between single-crystal spectra differing only ingCR

nd motivates a search for improved spectral simula
rocedures.
se

e

nd
).
n

n

For gCR 5 p(2p/n), the NMR signal at thej th point is
iven by

ps~ jt! 5 Tr@Aj
pr0~ Aj

p!†Q#, [13]

here the matricesr0 andQ represent the initial density a
bservable operator, respectively. By use of Eq. [8] in com
ation with the invariance of the trace to similarity trans
ations, Eq. [13] may be rewritten

ps~ jt! 5 Tr@exp$2imtrD% p mod nr0
T exp$imtrD% pQj

T# [14]

ith m defined in Eq. [9] and using the definitions

pr0
T 5 X†~ Ap

0!†r0Ap
0X, [15]

pQj
T 5 X†~ Ap1j mod n

0 !†QAp1j mod n
0 X 5 0Qp1j mod n

T .
[16]

quation [14] may conveniently be recast in the form

ps~ jt! 5 O
r ,s51

N

pf rs
~ j !exp$iv# rs jt%, [17]

ith pf rs
( j ) defined as

pf rs
~ j ! 5 exp$iv# rsmtr%@

p mod nr0
T#sr@

0Qj1p mod n
T #rsexp$2iv# rs jt%.

[18]

e note that onlyQ matrices forp 5 0 are needed to obta
f ( j ) for all n differentgCR angles and thatpf ( j ) is periodic in
and j with periodn. Furthermore, since only the amplitud

and not the positions) of the lines depend on thegCR-angle
ndex p, the signal can be averaged over then different gCR

ngles by averaging thef ( j ) matrices leading to

s#~ jt! 5 O
r ,s51

N

f# rs
~ j !exp$iv# rs jt%, [19]

FIG. 1. Schematic illustration of the periodic time-translational symm
etweengCR andvr t. For gCR 5 p(2p/N) the propagator for thej th period

j
p is related to the propagatorSk

0 for gCR 5 0. Each propagator may repres
period of free precession (delay) or a pulse sequence element.
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9EFFICIENT SPECTRAL SIMULATIONS IN NMR OF ROTATING SOLIDS
ith

f# rs
~ j ! 5 n21 O

p50

n21

pf rs
~ j !

5 n21 O
p50

n21

@p modnr0
T#srexpHiFp 2 intSp

nDnGv# rstJ
3 @0Qj1p modn

T #rsexpH2iF j 1 p 2 intSj 1 p

n DnGv# rstJ,

[20]

eing identified as a discrete cross correlation of two per
unctions (7).

By introducing the Fourier transform relations

^$ f# rs
~ j !%~v! 5 O

k

a# rs
~k!d~v 2 kvr!, [21]

a# rs
~k! 5 n21 O

j50

n21

f# rs
~ j !exp$2i2pjk/n%, [22]

here k 5 2n/ 2 1 1, . . . , n/ 2 (n even) ork 5 2(n 2
)/ 2, . . . , (n 2 1)/ 2 (n odd), andd is a standard del

unction (d( x) 5 1 for x 5 0 and otherwise zero), th

CR-averaged spectrum may be expressed as

^$s#~ jt!%~v! 5 O
r ,s51

N

^$ f# rs
~ j !%~v! # d~v 2 v# rs!,

5 O
r ,s51

N O
k

a# rs
~k!d~v 2 vrs

~k!!, [23]

ith

vrs
~k! 5 v# rs 1 kvr. [24]

quations [23] and [24] show that the frequency-domain s
rum consists ofn spinning sidebands of complex amplitu
# rs

(k) separated byvr. Using the Fourier transform properties
he cross correlation of periodic functions (7), the sideban
mplitudes can be expressed as

a# rs
~k! 5 ~r sr

~k!!* qrs
~k!, [25]

here

r sr
~k! 5 n21 O

j50

n21

~@ jr0
T#sr!*exp$2iv# rs jt%exp$2i2pjk/n% @26#
ic

c-

qrs
~k! 5 n21 O

j50

n21

~@0Qj
T#rsexp$2iv# rs jt%exp$2i2pjk/n%. @27#

quation [25] represents a generalization of expressions
or inhomogeneous (6) interactions given earlier by Levitt (5)
nd in a more general form by Skibstedet al. (8) taking
onideal RF excitation into account.
The general formulas in Eqs. [25]–[27] have several im

ant implications for numerical simulations. First, they ena
fficient gCR averaging for simulation of all NMR spectra
otating solids independently on the spin system and int
ions. Second, they exploit all the attractive features of CO
UTE (4) while performing thegCR averaging as an implic
art of the Fourier transformation. For this reason the
ethod may be referred to asg-COMPUTE. Third, they allow

traightforward exploitation of additional constraints on
nitial and observable operators. The latter aspect is addr
n the following section.

deal Excitation

In phase-sensitive NMR the initial density operator is o
elated to the observable operator according to

r0 5
1
2

~Q 1 Q†!. [28]

his is the case when the pseudo observableQ takes the form
5 Ia 1 iI b, whereIa and Ib are operators correspondi

o observation along two orthogonal axes (typically,a 5 x and
5 y) and the initial density operator is along the real axisr0

Ia). A typical example would ber0 5 I x after idea
reparation andQ 5 I1 being the pseudo observable co
ponding to quadrature detection. According to Eqs. [15]
16] this relation implies that

pr0
T 5

1
2

~0Qp
T 1 ~0Qp

T!†! [29]

nd that the sideband amplitudes can be written

a# rs
~k! 5

1
2

~uqrs
~k!u2 1 qsr

~2k!qrs
~k!!. [30]

his expression shows that the sideband amplitudes o
deally excited NMR spectrum of a rotating solid consist o
eal and a complex contribution, of which the latter is s
etric with respect to the RF carrier frequency (qrs

(2k) andqsr
(k)

orrespond to mirror frequencies). Furthermore, we note
q. [30] only requires Fourier transformation of theQT matri-
es in Eq. [27]. As a digression, we mention that for n
hase-sensitive detection, the symmetryr0 5 Q leads to the
orresponding relations
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10 HOHWY ET AL.
a# rs
~k! 5 uqsr

~k!u2 5 uqrs
~2k!u2 5 qsr

~2k!qrs
~k! [31]

erived using the fact that the density operator is alw
ermitian (9) and so are thejr0

T matrices. Equation [31] show
hat the symmetrya# rs

(k) 5 a# sr
(2k)* inherent to a pure real sign

s restricted further by thegCR averaging.
In the special case of aninhomogeneousinteraction (6), the
atricesAj and X are diagonal (the latter being the un
atrix) and the sparsity of theQj

T matrices is identical to th
f the observableQ. This implies that only the last term in E

29] and consequently the first term in Eq. [30] contribute
he spectrum. This conforms well with the finding of Levitt5)
ho analyzed MAS spectra influenced by anisotropic chem
hielding and found that the amplitude of each spinning s
and upongCR averaging is given by the sum of the squ
odulus of the complex sideband amplitude correspondin

he individualgCR angles. The general applicability of Eq. [3
pens the possibility to treat evolution underhomogeneou

nteractions in the same manner. It turns out that the spars
he Qj

T matrices also in this case prevents contributions f
he last term in Eq. [30]. This can be proven using the fact
he Qj

T matrices have the same rotational symmetry
espect to thez axis asQ when the propagatorsAj correspond
o free precession. Decomposition of theQ matrix into com-
onents which constitute irreducible representations of
ne-dimensional rotation group will therefore reveal the s
ity of theQj

T matrices. TypicallyQ 5 I1 which means tha
nly first-rank components of theQj

T matrices will be nonzero
esides proving that any single-pulse MAS NMR spectrum
pinning sidebands of uniform phase (within the high-fi
pproximation), this fact can be used to preselect rele

ransitions for optimum simulation efficiency. For hom
uclear spin pairs, for example, only 4 entries out of 16 n

o be Fourier transformed. Accordingly,gCR averaging may b
erformed with the same efficiency as for the inhomogen
ase. In comparison earlier approaches togCR averaging in
uch cases (1) are rather complicated and inefficient (vide
nfra).

Turning to the special case where then sequence elemen
ithin the rotor period (cf. Fig. 1) involves identical RF ir
iation, the last term in Eq. [30] cannot be neglected.
xample, this is the case for MAS nutation (10–12) and
RAMPS (15, 16) spectra which may have imaginary con
utions arising from the second term in Eq. [30].

EFFICIENT NUMERICAL SIMULATION

The results obtained in the previous sections can be us
ignificantly enhance the efficiency of numerical simulatio
t the same time the procedure for spectral simulatio
implified. Instead of averaging the spectrum over all t
uler angles, thegCR averaging is conducted implicitly in th
eneration of the spectrum. Calculating theQT (andrT matri-
s

o

al
e-

to
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e
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nt
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e

es in the case of nonideal excitation) according to Eqs.
nd [16] leads, via the Fourier transformations being an in
ic part of Eq. [30] for ideal excitation or Eq. [25] in the mo
eneral case, to theg-averaged amplitudesa# rs

(k). By running
hrough the detectable transitionsr , s 5 1, . . . , N, andk 5

n/ 2 1 1, . . . , n/ 2 (n even) ork 5 2(n 2 1)/ 2, . . . ,
n 2 1)/ 2 (n odd) and storing the amplitudea# rs

(k) at the
ositionvrs

(k) in the spectrum, thegCR-averaged spectrum for
ingle (aCR, bCR) crystallite-angle pair is obtained. Averagi
ver these two powder angles results in the spectrum i

orm of a histogram. To obtain proper lineshapes, the
owder averaged spectrum is Fourier transformed to the
omain, apodized, and finally Fourier transformed back to

requency domain.

-COMPUTE versus COMPUTE

The g-COMPUTE algorithm possesses several advant
elative to the original COMPUTE algorithm with explicitgCR

veraging. Ing-COMPUTE (i) the accumulated propaga
ver a full modulation period,An, needs to be diagonalized a

he transition frequencies calculated only forgCR 5 0, (ii) the
QT matrices need only be calculated once, and (iii) the Fo
ransform to obtain the sideband amplitudesa# (k) is performed
or all n gCR angles at the same time. To give a more deta
icture of these advantages, Table 2 gives the relative o

ion count or number of complex multiplications for the m
emanding steps of the two algorithms. The two most dem

ng steps in COMPUTE are the formation of thejQT matrices
nd the Fourier transformation of theN2 data setsfrs

( j ), which
oth must be performed for each of then gCR angles. Both o

hese steps are significantly reduced usingg-COMPUTE, in
hich Fourier transformation is conducted only twice (

25]) or once (Eq. [30]), reducing this effort by a facton
elative to COMPUTE as specified in Table 2. Thus, the ov
aving factor is approximately equal to the number ofgCR

ngles, which is typically in the range of 10–50.

TABLE 2
Relative Operation Count for Different Steps in the COMPUTE

and g-COMPUTE Algorithmsa

Step\method COMPUTEb g-COMPUTEb

j
T n24N3 n4N3

(j ) n22N2 0
( f (j )) or ^(Q)c,d sn2log2(n)N2/sn3N2 2sn log2(n)N2/2sn2N2

T or prT n4N3 0

a Operation counts correspond to averaging overn gCR angles and using th
ymmetry of ideal excitation (r 5 1

2
(Q 1 QT)) in the g-COMPUTE

lgorithm.
b s expresses the sparsity of thef# ( j ) matrices, as can be exploited throu

reselection based on its rotational symmetry, and is given as the num
onzero entries divided byN2.

c ^(Q) signifies the Fourier transformation given in Eq. [25].
d The operation counts are given for the FFT/nonfast FT case.



d b
h ic
s pr
c era
t ia
w -
q fo
a ct
a hic
g ing
r ws
s
3

T
o em
( a
t Fo
t th
C a
1 ete
r s
4 we
p
I or
g
t
f

p s
s
g uta
t FID
p d
t ns
a re
p u-
t FID
p tio
t
b an
f f
n ge
b uc
r rom
F U
t

ing
g ctra
w

lue
o ose
d the
i ly o
c r
n

c
1 en
i
b the
g M-
P CPU
s ber
f
(

11EFFICIENT SPECTRAL SIMULATIONS IN NMR OF ROTATING SOLIDS
RESULTS AND DISCUSSION

In general, spectral analysis of MAS spectra influence
omonuclear dipolar coupling as well as anisotropic chem
hielding represents a challenge to numerical simulation
edures. The extraction of parameters for the various int
ions responsible for the complex spectral features assoc
ith such homogeneously (6) evolving systems typically re
uires combination with iterative fitting procedures calling
large number of simulated spectra. Time-consuming spe

nalysis of this kind represents a typical application for w
-COMPUTE may lead to very large absolute time sav
elative to current methods. As an example, Fig. 2a sho
imulated zero-order rotational resonance spectrum for a31P–
1P spin pair in a transition–metal phosphine complex (13).
he spectrum was averaged over 256aCR, bCR crystallite
rientations distributed according to the REPULSION sch
14) and the equivalent of 16gCR angles, corresponding to
otal number of 4096 crystallites. Simulations based on
ran-77 implementations of the direct method as well as
OMPUTE andg-COMPUTE algorithms on a Digital Alph
00 4/200 work station and using the same input param
esulted in identical spectra but required computation time
0.9, 6.6, and 1.2 CPU s, respectively. The calculations
erformed under the assumption of ideal excitation, i.e.,r0 5

x and Q 5 I1, which allowed the use of Eq. [30] f
-COMPUTE and preselection of the four relevant (r , s)

ransitions using the rotational properties of theQj
T matrices

or COMPUTE as well asg-COMPUTE.
The total computation time for simulation of31P–31P spin-

air spectra (Fig. 2a) using the three different method
hown graphically in Fig. 2b as a function of the numbern of

CR angles and rotor divisions. It is evident that the comp
ion time for the direct method using a large number of
oints (1024 in the present case) is linear inn. This is ascribe

o the fact that the vast number of matrix multiplicatio
ssociated with generation of the FID in this method is
eatedn times upongCR averaging. We note that the comp

ation time for this method is also linear in the number of
oints. Figures 2b and 2c indicate that the total computa

ime for the COMPUTE algorithm is proportional ton2 for n
eing an integer power of 2, in which case fast Fourier tr

ormation (FFT) (17) may be used, orn3 for all other values o
.1 For g-COMPUTE this dependence is somewhat chan
ecause the cost of the Fourier transformation is red
elative to other stages in the algorithm. Finally, it is seen f
igs. 2b and 2c that for theg-COMPUTE algorithm, the CP

ime is close to linear inn.

1 Efficient Fourier transform routines specialized for certain (small) va
f the number of pointsn, which are noninteger powers of 2, exist, e.g., th
evised by Winograd (18). Because of the lack of generality, we found

mplementation of such routines impractical, and we focus instead main
omparing the performance ofg-COMPUTE to that of COMPUTE for Fourie
umbers.
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It is apparent from Fig. 2 that the advantage of us
-COMPUTE becomes particularly pronounced for spe
ith many spinning sidebands (i.e., for large values ofn). This

s

n

FIG. 2. (a) Simulation of a31P MAS NMR spectrum of NiP2C32H36O2

orresponding to a static field of 7.1 T and a spinning frequency ofvr/ 2p 5
111 Hz. Thesimulation used the31P–31P spin-pair tensor parameters giv

n Ref. (13), n 5 16 gCR angles and rotor divisions, and 256 pairs of (aCR,

CR) crystallite angles. The simulation required only 1.2 CPU s using
-COMPUTE algorithm while 9.7 and 47.3 CPU s were required for CO
UTE and the direct method, respectively. (b) The total number of
econds used for calculating the spectrum in (a) as a function of the numn
or the direct method (crosses), COMPUTE (triangles), andg-COMPUTE
squares). (c) The same as in (b) but using only Fourier numbers.
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spect becomes evident in Fig. 3 from simulation of the
erimental single-pulse1H MAS spectrum (Fig. 3a) of th
H–1H spin pair in Ba(ClO3)2 z H2O) recorded at 9.4 T using
ample spinning frequency of 2300 Hz. Recently, Tekelyet al.
19) analyzed similar spectra and determined the chem
hielding anisotropy to besaniso 5 10.5 6 0.5 ppm for both
rotons and a dipolar coupling constant to bebIS/ 2p 5
3,750 Hz. Inorder to facilitate comparison between exp
ental and simulated spectra, Fig. 3b shows the same spe

FIG. 3. (a) Experimental1H single-pulse MAS spectrum (9.4 T)
a(ClO3)2 z H2O recorded usingvr/ 2p 5 2300 Hz. Thespinning sideband
re superimposed on a broad hump. (b) The same spectrum as in (a) bu
simple baseline correction to remove the broad hump (ascribed to dyn

19)). (c) Simulation usingg-COMPUTE withn 5 44, which required 5.0
f CPU time. The largen value leads to correspondingly large computa

imes of 696.8 and 208.1 CPU s for COMPUTE and the direct me
espectively.
-

al

-
um

s in Fig. 3a but using baseline correction to remove the b
ump (also observed by Tekelyet al. (19) and ascribed t
ynamics) on which the sidebands are superimposed. Th
greement between simulated and experimental spectra

ained using the chemical shielding anisotropy and dip
oupling parameters from Ref. (19) along with the optimum
tted Euler anglesaPC 5 0, bPC 5 18.58, gPC 5 0, leading
o the spectrum in Fig. 3c. We note that the spectrum is
nsensitive to the asymmetry parameter which has been

5 1.0 for the simulation in Fig. 3c. For this specific exam
he computation time for calculations using theg-COMPUTE,
OMPUTE, and direct method is 2.6, 76.0, and 165.

espectively. This corresponds to a gain in efficiency of alm
factor 30 forg-COMPUTE relative to COMPUTE and

actor of 64 relative to the direct method.
To demonstrate the capability ofg-COMPUTE to cove

ases with identical RF irradiation between then sampling
oints, Fig. 4 shows a series of simulated1H MSHOT-3
RAMPS (20–22) spectra. We have recently demonstra

hat 1H shielding anisotropies can be extracted from the s
ing sidebands of MSHOT-3 CRAMPS spectra by itera
tting using simple single-spin simulations with scaled shi
ng parameters (22). However, to search the limits of su
pproximations, it is important to be able to perform sim

ions with the RF irradiation taken into account. An invest
ion of the stability of this method for obtaining1H chemica
hielding anisotropies toward strong homonuclear dipolar
lings is given in Fig. 4. Specifically, Figs. 4a–4f show M
OT-3 CRAMPS spectra for a1H–1H spin-pair system (onl
ne resonance shown) with the homonuclear dipolar cou
et to 0, 5, 10, 15, 20, and 25 kHz. The calculations used
eld strength of 300 kHz corresponding to the best com
ially available equipment. It is seen that only minor variati
n the spinning sideband amplitudes are induced by dip
ouplings below 20 kHz. For larger homonuclear coupli
he accuracy of the method may be influenced by res
ipolar terms and care should be taken in the data analysis
omputation time required for calculating one of the spect
ig. 4 usingg-COMPUTE, COMPUTE, and direct method
8.9, 63.4, and 71.7 s respectively. The relatively low
alues (compared to the earlier examples) indicate that st
n this case takes up a large fraction of the total computat
ffort because of the complicated multiple-pulse RF irra

ion. Despite this observation, it is evident that even in c
ith relatively few sampling points per rotor period (with
ithout RF irradiation) it is still advantageous to useg-COM-
UTE in comparison to COMPUTE.

CONCLUSION

In conclusion, we have analyzed the time-translational
ionship between thegCR powder angle and the periodic tim
odulationvr t induced by macroscopic sample rotation r

ant for solid-state NMR of rotating powders. It has b

sing
ics
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13EFFICIENT SPECTRAL SIMULATIONS IN NMR OF ROTATING SOLIDS
hown thatgCR averaging may always be expressed a
imple cross correlation of two periodic functions. This find
ives new insight concerning the relative phases of spin
idebands for powder spectra induced by inhomogeneo
ell as homogeneous interactionsand essentially eliminate

he need forgCR powder averaging in numerical simulations
olid-state NMR spectra. When combined with COMPU
ype calculations in the frequency domain,g averaging by

FIG. 4. Simulated1H CRAMPS spectra for a1H–1H spin pair (only one
esonance shown) characterized by the interaction parameters2v0sA

iso/ 2p 5
kHz, 2v0sA

aniso/ 2p 5 5 kHz, hA 5 0, 2v0sB
iso/ 2p 5 21 kHz,

v0sB
aniso/ 2p 5 0 kHz, hB 5 0, andbIS/ 2p 5 0 (a), 5 (b), 10 (c), 15 (d

0 (e), and 25 (f) kHz. The calculations were performed with two MSHO
locks between each sampling point usingn 5 25 gCR and 25 sampling poin
er rotor period (corresponding to 593 Hz spinning). The RF field strengt
00 kHz, leading to a cycle time of 33.75ms for the MSHOT-3 sequence.
CR
a

g
as

-

ross correlation may speed up simulation of solid-state N
pectra by a factor of 10–30 relative to state-of-the art ca
ations using COMPUTE. In addition the so-calledg-COM-
UTE method is conceptionally easier to incorporate
umerical simulation software. Due to its high efficiency
nticipate thatg-COMPUTE will find immediate application a
tool in numerical simulation and iterative fitting of solid-st
MR spectra.
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