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We explore the time-translational relation between one of the
powder angles (y) and the sample rotation angle (w,t) in NMR
spectroscopy of rotating solids. Averaging over the y powder angle
is shown to be generally equivalent to a cross correlation of two
periodic functions. This leads to a fundamental relation concern-
ing the phases of NMR spectra of rotating solids as well as
improved strategies for efficient simulation of experimental spec-
tra. Using these results in combination with the frequency-domain
simulation procedure COMPUTE (M. Edén et al., J. Magn. Reson.
A 120, 56 (1996)), it proves possible to reduce the computation
time for spectral simulations by typically a factor 10-30 relative to
the state-of-the-art calculations using the original COMPUTE
algorithm. The advantage and the general applicability of the new
simulation procedure, referred to as y-COMPUTE, are demon-
strated by simulation of single- and multiple-pulse MAS NMR
spectra of 3*P-2'P and *H-'H spin pairs influenced by anisotropic
chemical shielding and homonuclear dipolar interactions. © 1999

Academic Press

INTRODUCTION

associated with widely different requirements for the compu
tation time as demonstrated in Table 1. In the most commo
approach, step (i) concerns a time-ordered product of prop
gators, corresponding to infinitesimal rotations induced b
approximately time-independent Hamiltonians. For periodi
Hamiltonians this step only involves one period and is oftel
relatively inexpensive with respect to computation time. In its
simplest form (henceforth referred to as the direct method
step (ii) may involve formation of thousands of FID points by
successive multiplication of propagators from step (i), propa
gation of the density operator, and evaluation of the signal ¢
the scalar product between the density operator and the herr
tian adjoint of the observable. For typical spectral simulation
this step may account for up to 99% of the computation time
This observation is of fundamental importance for the desig
of efficient simulation procedures.

Previous methods to reduce the computational effort assi
ciated with y averaging have included the method of “time
translation,” in which step (i) may be performed with signifi-
cantly increased efficiency using the fact that one of the pow
der anglesy) and the sample revolutiom(t) both correspond

Extraction of detailed information about molecular structur® a rotation about the rotor axid)( This implies that the

and dynamics from solid-state NMR powder spectra oftgaropagators formed under step (i) for oppowder angle may
relies on numerical simulations. To obtain molecular paramie reused to form the propagators for all othesingles. In a
ters with the highest possible accuracy, the spectral simulationsre advanced approach based on Floquet theory Leetnte
are typically combined with iterative fitting procedures. Foal. (2) and Kuboet al. (3) recently demonstrated that the
spectra of rotating polycrystalline powders this data analysiseraging may be described analytically, and the latter grou
can be extremely time consuming, not only because the Hasiowed that in case of ideal pulse excitation this averaging m
iltonian describing the spin system is time dependent, but alse conducted implicity in the Fourier transformation of the
because a spectrum averaged over three powder angles néedsinduction decay. For spectral simulations, which may in
to be calculated for each iteration. The ability to conduetlve a huge number of matrix multiplications under step (ii),
reliable computer simulations and iterative fitting within @uch frequency-domain techniques are often very efficient
reasonable period of time therefore highly depends on thkso demonstrated recently by Hdet al. (4) by the introduc-
development of efficient simulation methods. tion of the COMPUTE ¢omputationover one modulation
The typical procedure for simulating NMR spectra of rotaperiod usingtime evolution) algorithm. Exploiting the period-
ing solids can be divided into two major steps: (i) integratioieity of the Hamiltonian and performing the calculations in the
of the equation of motion to obtain propagators for the tinfeequency domain, the COMPUTE algorithm leads to a sub
evolution and (ii) calculation of the free-induction decay (FID3tantial reduction (typically a factor of about 5 in our imple-
based on these propagators. For a polycrystalline powder thesntation relative to the direct method) in the computatiol
steps are repeated for each crystallite orientation and the restiftee required for calculation of spectra associated with peri

coadded to obtain the final FID. The two steps are typicaltydic Hamiltonians.
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TABLE 1 ;
j
Computational Effort Distributed over Initialization, Integra- RM)L = R* ) Cexnf —ikatdl)
tion of the Equation of Motion, and Spectrum Generation for ( J'O) E ( "k) A crf 0kl (Ber)
Calculation of Typical Magic-Angle Spinning Solid-State NMR ,
Spectra Using a Direct Method, COMPUTE, and y-COMPUTE X exp{—il (ycr + o,t)}d{B(BrD), [2]
(See Text)?

kl=—j

whered? is a reduced Wigner matrix of rank { acg, Bcr,

Methodstage InitializatioR Integratior Spectrum generatidn ’
vcrt the set of Euler angles connecti@to R, and {ag, =

Direct 0.3 0.1 99.6 o, BrL, 0} the set of Euler angles relatifigto L. w, is the
COMPUTE 218 2.4 78.2 angular spinning frequency anglk, the angle between the
¥-COMPUTE 458 43 50.0 rotor axis and the static field direction.

2 As a percentage of the total CPU time. The calculations used'fé’P . .
spin-pair parameters given in the legend to Fig. 2. Time-Translational Symmetry

b Typically involves parameter input, tensor transformations, and output of L . .
results. From Eq. [2] it is evident thaty.g may equivalently be

° Step (i): Solution of the equation of motion by a time-ordered product §€darded a translation in time bycg/w,. This leads to the
propagators. following relations for the Hamiltonians and propagators for
9 Step (ji): Calculation of the spectrum or FID from the propagators.  the two anglesycr = vo andycgr = 0

In this paper we demonstrate that the symmetry relation H(t; yo) = H(t + E; 0), [3]
between the angle and the periodic time dependence of the ©r

Hamiltonian for rotating solids can be used directly in the Yo Yo
frequency domain, thereby providing new analytical insight U(tz, ty; o) = U to + w0 0t 0],
and significantly faster simulation procedures. It is shown that [4]

the fundamental explanation of Levi&)( concerning the uni-

form phase of spinning sidebands in magic-angle-spinnifjghere the propagatot) is evaluated from timet; to t,.
(MAS) powder spectra arising from inhomogeneous interagqyations [3] and [4] can be recast in a discrete form
tions {ide infrg), may be generalized to homogeneous intefygitionally include the case of general periodic RF irradiation
actions in the sense of Maricq and Waugh (This result may 1o synchronized witm periods in one rotor period, =

be exploited to virtually remove the cost gfaveraging in 5. “For yer = p(2m/n) the relations are
numerical simulations of NMR spectra for rotating powders. '

The time-translational symmetry property is most efficiently 5

exploited in the frequency domain by an improved version of H(t; p 77) = H(t + pr; 0), 5]
the COMPUTE algorithm, dubbeg¢-COMPUTE, which per- n

forms thewy-averaging by aross correlation(7) of two peri- o0

odic functions. In typical cases this leads to a reduction by a U(jf, (j—Dmp n) == S?pﬂ-_lmodn)w [6]
factor of 10-30 in computation time for the simulations as

compared to the state-of-the-art combination of the original

COMPUTE algorithm with % averaging by time translation.” With 7 = 7./n and &’ being the propagator for th¢h period
(j = 1, 2,...,n) of the general timing scheme in Fig. 1

corresponding to the.g anglep(2=/n). It is noted that we
use a notation similar to that used by |Bd al. (4) to facilitate
g direct comparison between COMPUTE and the new algc
rithm y-COMPUTE.
It is evident that Eq. [6] may be used directly in numerical
A ) NN, simulations to generate all propagatds from the set of
HAt) = C* X (RY)' T}, [1]  propagators® corresponding toycr = 0. Hence, the explicit
i integration of the equation of motion need only be performe
for p = 0 and a factor close o can be saved in step (i) of the
whereC* is constant and’ﬁo and (Rj",o)'- are components of simulation. This corresponds toy-averaging by time transla-
the j-rank tensors describing spin and spatial dependencigsn” (1). However, physical insight and much higher benefit in
respectively. The spatial tensor in the laboratory framgi§¢ terms of saved computation time may be gained by considerir
related to a rotor-fixed frameRj and a crystallite-fixed frame the consequences of the time-translational symmetry in tt
(C) through frequency domain.

THEORY

Consider the high-field truncated time-dependent Hamilt
nian governing a NMR interaction
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v-COMPUTE: y-Angle Averaging as a Cross Correlation - T T, -
Consider the timing of a rotor perioff = nr, as sketched
in Fig. 1, accommodating blocks of identical, arbitrary pulse 1 2 3 [ e | | meeeeen n
sequence elements (obviously including the important case
of no RF irradiation) of duratiorr. For the crystallite angle Yop=0 S°1 S(; s‘; S(j) 3?1
Yer = P(2m/n), the accumulated propagatoA$ are recur- . .
- . _n2t . a0 o o
sively defined as YCR_ n - sp+1 Sp+2 Sp+3 s(p+j-1 mod n) +1 sp
qJA_p forj >0 FIG. 1. Schematic illustration of the periodic time-translational symmetry
AP = - [7] betweeny.g andw,t. Forycg = p(27/N) the propagator for thgth period
] 1, forj=0 ' S is related to the propagat&f, for ycr = 0. Each propagator may represent

a period of free precession (delay) or a pulse sequence element.

Using the time-translational property in Eq. [6} may be
related to the propagata corresponding toycg = 0 by For ycr = p(2m/n), the NMR signal at thgth point is
given by
A]p = Ajp+p mod n( A?])m( AS moch)Jr [8] .
Ps(j7) = TIAPPo( AD)'Q], [13]
with
where the matricep, and Q represent the initial density and
: observable operator, respectively. By use of Eg. [8] in combi
(TP . (P : : . . -
m=intl ——| —int| = [9] nation with the invariance of the trace to similarity transfor-
n n : .
mations, Eq. [13] may be rewritten
where int@/b) denptes the integer part of the fractiafb. Ps(j7) = Tr[exp{—imz,D} P™¢",T expfimz, D} ijT] [14]
For aN-level spin system, the propagatdf accumulated
over the rotor periodr, is represented by a unitafy X N
matrix. Forp = 0, this matrix may be unitarily diagonalized
according to

with m defined in Eqg. [9] and using the definitions

Ppo = XT(AD pARX, [15]

Aﬂ =X exp{—iDTr}XT, [10] ijT = XT(Agﬂ' modn)TQAg+j moan =0 -;E+j modn-* [16]
where D is a real, diagonal matrixA® has N complex
eigenvaluesA, (r = 1, 2,...,N). Using the complex
logarithm function, the real transition frequencies can be
calculated as

Equation [14] may conveniently be recast in the form

N

pS(jT) = E Pf g)exp{ia’rsj’r}’ [17]
o —D. — D= MA N 11 -
@rs = Drr = Des= 07 - with Pf ) defined as

Likewise, forycg = p(27/n) with 0 < p < nthe propagator et () — expfi@, M7 [P ™ "o T [°QL. » moarlr€XPl—i @;s j 7}
AR = ASAY(AY' over a full modulation periodr, may be ° Jrpmod »
diagonalized according to [18]

We note that onlyQ matrices forp = 0 are needed to obtain
Ap = Xpexp{—iDT}X], X, = ApX. [12] PO for all n differenty. angles and thaf ) is periodic in

p andj with periodn. Furthermore, since only the amplitudes
Clearly, for all of then differenty. angles the propagators(and not the positions) of the lines depend on the-angle
over a full modulation period have the same eigenvalues aifidex p, the signal can be averaged over thelifferent ycr
therefore identical transition frequencies (line positions@ngles by averaging thié” matrices leading to
This fundamental property suggests that a simple relation
exists between single-crystal spectra differing onlyyigg N
and motivates a search for improved spectral simulation 3(j7) = E fDexpliw,s T}, [19]
procedures. rs=1
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with n—-1
qﬁ? = n71 E ([OQjT]rseXp[_i(_’)rsjT}exq_izwjk/n}- [27]

n—-1 j=0

i =n 3o
p=0 Equation [25] represents a generalization of expressions val
he1 for inhomogeneousd) interactions given earlier by Levitb)
=nt > modnpg]srexp{i[p _ int(p>n]c‘orsf} and_ in a more _ger_lera_l form by Skibsted al. (8) taking
n nonideal RF excitation into account.

- The general formulas in Eqgs. [25]-[27] have several impor
. TPy | implicati i i i '
% [0Q1T+pmodn]rsexp{—l[l +p- mt( >n]wr57}' tan_t _|mpl|cat|ons for_ numerlc_al S|m_ulat|ons. First, they enable
n efficient y-g averaging for simulation of all NMR spectra of
[20] rotating solids independently on the spin system and intera
tions. Second, they exploit all the attractive features of COM

being identified as a discrete cross correlation of two periodfJTE @) while performing theycg averaging as an implicit

functions ). part of the Fourier transformation. For this reason the ne\
By introducing the Fourier transform relations method may be referred to gsCOMPUTE. Third, they allow
straightforward exploitation of additional constraints on the
F{T DN w) = z a98(w — ka,) [21] initial and observable operators. The latter aspect is address
rs r’s

in the following section.

n-1 Ideal Excitation
& =n* X flexp(—i2mjk/n}, [22] L i . .
i—0 In phase-sensitive NMR the initial density operator is ofter
related to the observable operator according to
wherek = —n/2 + 1,...,n/2 (n even) ork = —(n —
D/2,..., O — 1)/2 (n odd), andé is a standard delta po = % (Q + QM. [28]

function (6(x) = 1 for x = 0 and otherwise zero), the

vcr-@averaged spectrum may be expressed as o
This is the case when the pseudo observébtakes the form

Q =1, + ilg, wherel, andl; are operators corresponding

N
Gfel _ 1T () - to observation along two orthogonal axes (typicadlys x and
He(jHw) = rzl Hihe) @ 8 Ors) B = y) and the initial density operator is along the real ayis (
' = 1,). A typical example would bep, = |, after ideal
N preparation and) = 1" being the pseudo observable corre-
= > > a¥s(w— o), [23] sponding to quadrature detection. According to Egs. [15] an
rs=1 k [16] this relation implies that
Wi oy =10Q0 + QD)) [29]

o = @, + ko,. [24]
and that the sideband amplitudes can be written
Equations [23] and [24] show that the frequency-domain spec-
trum consists of spinning sidebands of complex amplitude
al separated bw,. Using the Fourier transform properties of a¥ =3 (|9¥2 + a5 ¥g). [30]
the cross correlation of periodic functions),the sideband

amplitudes can be expressed as This expression shows that the sideband amplitudes of ai

ideally excited NMR spectrum of a rotating solid consist of &
ad = (ri)*qr, [25] real and a complex contribution, of which the latter is sym-
metric with respect to the RF carrier frequengf;(¥ andq{®
where correspond to mirror frequencies). Furthermore, we note th:
Eq. [30] only requires Fourier transformation of t@é matri-
ces in Eq. [27]. As a digression, we mention that for non:
e =nt E ([pdls)expl—i@.jriexpl—i2mk/n} [26] phase-sensitive detection, the symmaeigy= Q leads to the
corresponding relations
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2= lofs 12 = o By TABLE2
Relative Operation Count for Different Steps in the COMPUTE
and y-COMPUTE Algorithms?

Ak — k)
ais) - |qér

derived using the fact that the density operator is always

hermitian @) and so are thép} matrices. Equation [31] shows  Stepmethod COMPUTE y-COMPUTE’
Fhat the_ symmetr@g® = a{ " inhere_nt to a pure real signal N 2N AN
is restricted further by the . averaging. ) 2IN? 0

In _the special case of z_i'nhomogeneoumterac_tion 6), the_ F(ED) or F(Q)°®  onZlog,(NNZGn®N2 20 log,(n)N?/20n2N?
matricesA; and X are diagonal (the latter being the unity,™ or PpT n4Nz® 0

matrix) and the sparsity of tthT matrices is identical to that
of the observabl®. This implies that only the last term in Eq. * Operation counts correspond to averaging ovger angles and using the
[29] and consequently the first term in Eq. [30] contributes @g’gmtg’ of ideal excitation( = 7(Q + Q7)) in the y-COMPUTE
the spectrum. This conforms well with the finding of Lev) (  © ; expresses the sparsity of the” matrices, as can be exploited through
who analyzed MAS spectra influenced by anisotropic chemigakselection based on its rotational symmetry, and is given as the number
shielding and found that the amplitude of each spinning sid@snzero entries divided biy?.

band uponycr averaging is given by the sum of the square Z@(Q) signifies the Fourier t_ransformation given in Eq. [25].

modulus of the complex sideband amplitude corresponding to The operation counts are given for the FFT/nonfast FT case.

the individualy.g angles. The general applicability of Eq. [30]
opens the possibility to treat evolution undeosmogeneous ces in the case of nonideal excitation) according to Egs. [1°
interactions in the same manner. It turns out that the sparsityapfd [16] leads, via the Fourier transformations being an intrin
the QjT matrices also in this case prevents contributions frogic part of Eq. [30] for ideal excitation or Eq. [25] in the more
the last term in Eq. [30]. This can be proven using the fact thgéneral case, to thg-averaged amplitudeal®). By running
the QjT matrices have the same rotational symmetry witthrough the detectable transitionss = 1, ...,N, andk =
respect to the axis asQ when the propagatos; correspond —n/2 + 1,...,n/2 (n even) ork = —(n — 1)/2, ...,

to free precession. Decomposition of t@ematrix into com- (n — 1)/2 (n odd) and storing the amplituda® at the
ponents which constitute irreducible representations of tpesition¥ in the spectrum, the.r-averaged spectrum for a
one-dimensional rotation group will therefore reveal the spagingle (cg, Bcr) Crystallite-angle pair is obtained. Averaging
sity of the Q] matrices. TypicallyQ = I which means that over these two powder angles results in the spectrum in tt
only first-rank components of tr(ejT matrices will be nonzero. form of a histogram. To obtain proper lineshapes, the ful
Besides proving that any single-pulse MAS NMR spectrum haswder averaged spectrum is Fourier transformed to the tim
spinning sidebands of uniform phase (within the high-fieldomain, apodized, and finally Fourier transformed back to th
approximation), this fact can be used to preselect relevdréquency domain.

transitions for optimum simulation efficiency. For homo-

nuclear spin pairs, for example, only 4 entries out of 16 needCOMPUTE versus COMPUTE

The y-COMPUTE algorithm possesses several advantage
I8 ative to the original COMPUTE algorithm with explicjt-g
averaging. Iny-COMPUTE (i) the accumulated propagator
over a full modulation periody,,, needs to be diagonalized and

case. In comparison earlier approachesytg, averaging in
such caseslj are rather complicated and inefficientide

infra). the transition frequencies calculated only = 0, (ii) the
_TL_Jrnmg fo the speual case whe_re utneseq_uenc_e eleme_ntszT matrices need only be calculated onceﬁ?;?d (iii) the Fourie
within the rotor period (cf. Fig. 1) involves identical RF ira~ o storm to obtain the sideband amplitu@é® is performed
diation, the _Ias_t term in Eq. [30] cannot b_e neglected. F%r all n ycg angles at the same time. To give a more detaile
example, this is the case for MAS nutafuoﬂuO_&lz) and _picture of these advantages, Table 2 gives the relative opet
CR.AMPS .(L.S’ 1§ spectra which may have Imaginary contriion count or number of complex multiplications for the most
butions arising from the second term in Eq. [30]. demanding steps of the two algorithms. The two most deman
ing steps in COMPUTE are the formation of #@" matrices
EFFICIENT NUMERICAL SIMULATION and the Fourier transformation of tiN¢ data setd‘), which
both must be performed for each of they-r angles. Both of
The results obtained in the previous sections can be usedhese steps are significantly reduced usin@OMPUTE, in
significantly enhance the efficiency of numerical simulationsthich Fourier transformation is conducted only twice (Eq.
At the same time the procedure for spectral simulation [&5]) or once (Eq. [30]), reducing this effort by a factar
simplified. Instead of averaging the spectrum over all threelative to COMPUTE as specified in Table 2. Thus, the overa
Euler angles, the/ - averaging is conducted implicitly in the saving factor is approximately equal to the numberygf;
generation of the spectrum. Calculating &€ (andp’ matri- angles, which is typically in the range of 10-50.
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RESULTS AND DISCUSSION

In general, spectral analysis of MAS spectra influenced by
homonuclear dipolar coupling as well as anisotropic chemical
shielding represents a challenge to numerical simulation pro-

cedures. The extraction of parameters for the various interac- a
tions responsible for the complex spectral features associated
with such homogeneoush6) evolving systems typically re- 150 100 50 0 50 ppm

guires combination with iterative fitting procedures calling for
a large number of simulated spectra. Time-consuming spectral
analysis of this kind represents a typical application for which
v-COMPUTE may lead to very large absolute time savings
relative to current methods. As an example, Fig. 2a shows a
simulated zero-order rotational resonance spectrum fdPa

31p spin pair in a transition—-metal phosphine compl&8).( %
The spectrum was averaged over 258z, SBcr Crystallite £
orientations distributed according to the REPULSION schen®
(14) and the equivalent of 1.k angles, corresponding to a?j
total number of 4096 crystallites. Simulations based on For-
tran-77 implementations of the direct method as well as the
COMPUTE andy-COMPUTE algorithms on a Digital Alpha
100 4/200 work station and using the same input parameters |
resulted in identical spectra but required computation times of  ¢f
40.9, 6.6, and 1.2 CPU s, respectively. The calculations were

performed under the assumption of ideal excitation, pg .= 350 . ’ ,
I, and Q = |7, which allowed the use of Eq. [30] for

v-COMPUTE and preselection of the four relevamt §) 3001

transitions using the rotational properties of l@fé matrices

for COMPUTE as well ag-COMPUTE. 250 |

The total computation time for simulation 8tP—*P spin-
pair spectra (Fig. 2a) using the three different methods
shown graphically in Fig. 2b as a function of the numbeof
Ycr @ngles and rotor divisions. It is evident that the computa> 150}
tion time for the direct method using a large number of FID
points (1024 in the present case) is lineanirThis is ascribed 100 -
to the fact that the vast number of matrix multiplications
associated with generation of the FID in this method is re- 50}
peatedn times uponycg averaging. We note that the compu-
tation time for this method is also linear in the number of FID ~ 0&&—8
points. Figures 2b and 2c indicate that the total computation
time for the COMPUTE algorithm is proportional t& for n n number of segments in one period
being an integer power of 2, in which case fast Fourier trans¢,5 , (a) Simulation of &P MAS NMR spectrum of NifCs,HacO,
formation (FFT) (7) may be used, an® for all other values of corresponding to a static field of 7.1 T and a spinning frequenay, t2m =
n.! For y-COMPUTE this dependence is somewhat changedi1 Hz. Thesimulation used th&'P-*'P spin-pair tensor parameters given
because the cost of the Fourier transformation is reducedref. @3, n = 16 ycr angles and rotor divisions, and 256 pairs atf,
relative to other stages in the algorithm. Finally, it is seen froﬁFR) crystallite angles. The simulation required only 1.2 CPU s using the

. . v-COMPUTE algorithm while 9.7 and 47.3 CPU s were required for COM-
Figs. 2b and 2c that for th&COMPUTE algorlthm’ the CPU PUTE and the direct method, respectively. (b) The total number of CPL

time is close to linear im. seconds used for calculating the spectrum in (a) as a function of the numbel
for the direct method (crosses), COMPUTE (triangles), gfdOMPUTE

1 Efficient Fourier transform routines specialized for certain (small) valud§auares). () The same as in (b) but using only Fourier numbers.
of the number of points, which are noninteger powers of 2, exist, e.g., those

devised by Winogradl@®). Because of the lack of generality, we found the . . .
implementation of such routines impractical, and we focus instead mainly on It is apparent from Fig. 2 that the advantage of using

comparing the performance gfCOMPUTE to that of COMPUTE for Fourier V"COMPUTE' b.ecom_es particqlarly pronounced for SPeCt“
numbers. with many spinning sidebands (i.e., for large values)fThis

200 +

PU-time/s

| 0 r —H]

20 40 60 80 100 120
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as in Fig. 3a but using baseline correction to remove the broe
hump (also observed by Tekebt al. (19) and ascribed to
dynamics) on which the sidebands are superimposed. The b
agreement between simulated and experimental spectra is ¢
tained using the chemical shielding anisotropy and dipols
coupling parameters from Refl9) along with the optimum
fitted Euler anglesipc = 0, Bpc = 18.5, ypc = 0, leading
to the spectrum in Fig. 3c. We note that the spectrum is quit
insensitive to the asymmetry parameter which has been set
m = 1.0 for the simulation in Fig. 3c. For this specific example
\ the computation time for calculations using i®COMPUTE,

COMPUTE, and direct method is 2.6, 76.0, and 165.3 s
respectively. This corresponds to a gain in efficiency of almo:s
a factor 30 fory-COMPUTE relative to COMPUTE and a
a factor of 64 relative to the direct method.
w U\/\/\NM To demonstrate the capability of-COMPUTE to cover
cases with identical RF irradiation between thesampling
points, Fig. 4 shows a series of simulatéd MSHOT-3
CRAMPS @0-22) spectra. We have recently demonstratec
that *H shielding anisotropies can be extracted from the spir

ning sidebands of MSHOT-3 CRAMPS spectra by iterative
fitting using simple single-spin simulations with scaled shield
b ing parameters2?). However, to search the limits of such
MN\AA_ approximations, it is important to be able to perform simula:
tions with the RF irradiation taken into account. An investiga-
tion of the stability of this method for obtainintd chemical
shielding anisotropies toward strong homonuclear dipolar cot
plings is given in Fig. 4. Specifically, Figs. 4a—4f show MS-
HOT-3 CRAMPS spectra for &H-"H spin-pair system (only
one resonance shown) with the homonuclear dipolar couplin

setto 0, 5, 10, 15, 20, and 25 kHz. The calculations used a F

;/N\MJUU field strength of 300 kHz corresponding to the best commel
cially available equipment. It is seen that only minor variations

40 20 0 20 40 in the spinning sideband amplitudes are induced by dipole
Frequency (kHz) couplings below 20 kHz. For larger homonuclear couplings

the accuracy of the method may be influenced by residu
Ba(ClO;), - H,0 recorded using,/27 = 2300 Hz. Thespinning sidebands dipolar terms ?‘”d Care.ShOUId be taker.] in the data analysis. T
are superimposed on a broad hump. (b) The same spectrum as in (a) but ugmglputatlon time required for calculating one of the spectra i
a simple baseline correction to remove the broad hump (ascribed to dynanfidg. 4 usingy-COMPUTE, COMPUTE, and direct method is
(19)). (c) Simulation usingy-COMPUTE withn = 44, which required 5.0 s 38.9, 63.4, and 71.7 s respectively. The relatively low gai
qf CPU time. The largen value leads to correspondingly large _computatiorvames (compared to the earlier examples) indicate that step
times of 696.8 and 208.1 CPU s for COMPUTE and the direct methofl, g case takes up a large fraction of the total computation:
respectively. . . . .
effort because of the complicated multiple-pulse RF irradia
tion. Despite this observation, it is evident that even in case
with relatively few sampling points per rotor period (with or
aspect becomes evident in Fig. 3 from simulation of the ewithout RF irradiation) it is still advantageous to ug€OM-
perimental single-pulséH MAS spectrum (Fig. 3a) of the PUTE in comparison to COMPUTE.
*H-"H spin pair in Ba(CIQ), - H,O) recorded at 9.4 T using a
sample spinning frequency of 2300 Hz. Recently, Teletlzl. CONCLUSION
(19) analyzed similar spectra and determined the chemical
shielding anisotropy to be®"s° = 10.5 + 0.5 ppm for both In conclusion, we have analyzed the time-translational rele
protons and a dipolar coupling constant to bg/2m7 = tionship between thg.r powder angle and the periodic time
43,750 Hz. Inorder to facilitate comparison between experimodulationw,t induced by macroscopic sample rotation rele-
mental and simulated spectra, Fig. 3b shows the same spectuamt for solid-state NMR of rotating powders. It has beer

FIG. 3. (a) Experimental’H single-pulse MAS spectrum (9.4 T) of
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cross correlation may speed up simulation of solid-state NMI
spectra by a factor of 10-30 relative to state-of-the art calct
lations using COMPUTE. In addition the so-callgeCOM-
PUTE method is conceptionally easier to incorporate int
numerical simulation software. Due to its high efficiency we
anticipate that-COMPUTE will find immediate application as
a tool in numerical simulation and iterative fitting of solid-state
NMR spectra.
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